If a proof was needed, here it is: The model builders of today are not reduced to buyers of the precious and expensive as the world have tried to tell. The unexpected lively echo of the suggestions for the do it yourself motors shows, that even in the time of the ARF models and everything can be bought ready, many model flyers still want to be creative and prepared to do some experimenting. ![]() Insurmountable problems seems
to arise only when the individual collides with a sales organisation
programmed for efficiency, like when someone tries to buy small
numbers of goods. The getting of stator pieces and magnets have
been nearly impossible. More on that later. And of course when
trying to build the motor, a number of questions turned up not
answered enough in the first article. This theme will be dealt
with now. Questions, tips and concrete instructionsLet us start with a shortage in the theory. Nothing was told
of the principle of magnetic feed back. A lot of people have
asked if one could not just cut away the unused stator teeth.
No, please no. Contrary to a common two-pole
machine the magnet flow from one coil, in the Torquemax motor
(and in four-pool motors), do not go diagonal through the motor
(quite a long way) but in the form of a W. Like the diagram
shows, the magnetic flow goes from the coil over the rotor magnet
and then in two halves through the teeth without windings and
back to the coil. ![]() While the stators blades are cut to 12 and there are 14 magnets, there is no 'hard raster ring' like in other BL motors. Stator blades specially cut for this kind of motor should really have thinner unwound teeth. However there is no need to reduce them with a file. Winding schematic
Magnets
ControllerSome motor builders tried to use other controllers than the ones mentioned in the first article. In principle the Torquemax will run with any controller made for a sensorless motor. However it could be a problem with the limit frequency. Our 14-pole outside runner needs for every revolution 7 electrical switching cycles. If the controller have a frequency limit of 50 kHz, the rpm limiting will cut in at around 7000 rpm. Many times have also the question been asked about a do it yourself controller for the Torquemax. Here come first a careful warning. A controller for a brushless controller for a sensorless motor is a lot of work and can in no way be compared to a controller for ordinary brushed motors. A project like this needs expertise in circuit design and in software programming and must be made in SMD technique on several circuit boards to keep it light and compact enough, not to loose the weight advantage of the system. But the author is happy to tell that some individuals already are working in this direction. However, taken from experience, it will take some time yet. This do-it-yourself controller exists and works very well. It allows even more settings than other, more expensive controller (measurements (goto Vorzuendung) on my German HP). However soldering of these small SMD parts on the tiny PC board isn't easy and shouldn't be taken as a first excursion into SMD technique. You need osciloscope to find out, why it isn't working after you've put some solder bridges on the board. MEGRA is selling the kit. P.R. Propeller
Harder than anticipated had been the process of getting magnets and stator disks. The "Supply Service" set up by the author can not complain of not being used and even run out of supply itself. Regrettably some of the suppliers did not stand by their words. Stator disks of 32 and 35.5 mm were hard to get. Things got better. Stator disks of 34.5 mm diameter can be bought from the firm Leaner Motoren Technic (Phone (0)89-6019922 with the country code for Germany first). This disks are of best quality (0.3 mm) and have a 6 mm hole in them. One might need an additional bushing. Today, 6 months later, very is no problem in getting magnets and stators at BATT-MANN And now THE BIG ONE ....
Blue prints:
The magnets can be lined up two pieces of 12 mm length or one magnet with the dimension 24 mm x 5.9 mm x 2 mm already in stock. The first solution gives some theoretical advantage but the second one is easier to do. It is obvious that the Torquemax thanks to the simple mechanical construction has its limit. Due to placement of bearings on one end of the motor, the mechanical stability isn't the best. By the comparatively long magnets, current peaks and also bugs in the software (the programmer is only human) can lead to bends. A bigger diameter (for example 38 mm diameter disks and 3 mm thick magnets) would in many aspects be better than longer magnets. An important thing, not to be underrated, are the forces working on the magnets even during normal operation. If the machine is intended to run at high current (40 amps and higher) a good gluing is important. (Preferable with UHUplus endfest 300). One could also consider to make the iron tube 0.5 mm thicker. The RPM is however, provided the rotor is balanced, uncritical. How will this story continueThe concept of the Torquemax motor is not finished yet. Thoughts of using the motor in an impeller have already been sketched up by Christian Lucas and awaits to be done. It would also be interesting to rearrange the Outside Runner a bit to permit the motor to be mounted in the usual way to a front former in a model. We are also looking into to reduce the iron losses in the motor with a quite different design. Stay tuned to LRK sites! The HTML-editor and translater has built few motors, that are runnig very smooth at 300-400 watts. |